The Galaxy Experience: First 90 Cases

D. Kyle Hogarth, MD

D. Kyle Hogarth, MD

Director of Bronchoscopy, Professor of Medicine, University of Chicago Dr. Hogarth is the first Galaxy System^{**} user in the United States. He is a co-director of the lung cancer screening program and established the nodule clinic at UCMC. He is a leading expert in pulmonary diseases, specializing in the treatment of lung cancer and minimally invasive diagnosis. A pioneer in the space, he has been and is currently involved in a number of studies, including NAVIGATE, FRONTIER, TARGET and MATCH.

"A successful biopsy is either a diagnosis of malignancy or of specific or non-specific benign conditions that are biopsied with a confirmed Tool-in-Lesion."

Over **500 lung biopsies** annually

I perform most of my lung biopsies using robotic-assisted bronchoscopy. In the recent past, I've used the Monarch[™] platform and BodyVision. I've also used Illumisite[™] and the superDimension[™] navigation system. However, some of the challenges I encountered with these technologies included:

• Inability to accurately reach into the lung periphery

 Failure to overcome CT-to-body divergence, particularly with small lesions

Absence of integrated imaging

 Tedious reprocessing of scopes, adding time to room turn over between cases

I decided to start using the Galaxy System[™] as
I anticipated benefits in biopsying peripheral lesions
that are smaller in size.

The Galaxy System has the ability to correct for CT-to-body divergence as well as confirm Tool-in-Lesion using tomosynthesis technology by integrating with a variety of C-arms.

It also features augmented fluoroscopy – a virtual representation, in the form of a blue circle, that overlays on the updated target, and offers confidence to the user that the correct lesion in the right location is being targeted.

Insights from the first 90 Galaxy System[™] procedures

110 lesions investigated in 90 patients

LESION CHARACTERISTICS		
16mm	average size	
81%	were less than/equal to 20mm	
35%	were less than/equal to 10mm	
16%	were GGOs	
65%	had no bronchus sign	

- Had the Stellettas sign			
LESION LOCATION	Right	Left	
Upper	36%	29%	
Middle	8%	_	
Lower	17%	10%	

PROCEDURE RESULTS		
46 mins*	average procedure time (Scope in – Scope out)	
6 mins	average fluoroscopy time	
36 mgy	average radiation dose	

Challenging lesions in challenging locations

Most lesions were in upper lobes, and outer 1/3

92% to 96%

Diagnostic Yield**

^{*} Several procedures included training sessions that lengthened procedure time

^{**} The range is explained by consideration of results from 3 cases (elaborated below):

 $[\]hbox{-} 2 cases resulted in A typical cells confirmed in final pathology result and are awaiting CT\,\&\, follow-up$

Case example

Performed in August 2023

Presentation:

- Male patient with suspected colon cancer metastasis. Previous bronchoscopy procedure with competing technology was non-diagnostic.
- Lesion was 9 x 13mm, in the outer 1/3rd of the lung close to the pleura, in the left lower lobe (LLL). Target was marked as 9mm.
- Performed biopsy under breath hold due to lesion being in the LLL, close to the diaphragm.
- No bronchus sign seen.

Approach:

• Navigated to the LLL. Total navigation time was 70s. (Registration was only 40s).

 CT-to-body divergence observed.
 Tomosynthesis technology was used – with GE OEC Elite CFD and the Galaxy System's integrated imaging capability (TiLT) – to correct for the divergence.

 TiLT image looked great and Tool-in-Lesion was confirmed in 3 planes on augmented fluoro. Time from inserting scope to start of biopsy workflow was 10 mins.

Outcome:

- Diagnosis of Adenocarcinoma was made using Galaxy System[™] on a forceps pass.
- Patient was a candidate for SBRT, so a fiducial was placed in the LLL.

